郑州大学:研发柔性压力传感器中的微形态工程及其人工智能应用

可穿戴技术因其在健康医疗、人机交互和物联网等众多领域的潜在应用价值而备受学界和工业界的关注。柔性压力传感器是可穿戴器件中不可或缺的一部分,其可以反映压力强度、持续时间、间隔及频率等信号,具有高度柔性、低成本以及适于高度集成应用等特点。传感材料的微结构化设计很大程度上决定着活性层的比表面积、可形变空间和形变能力等特性,对器件的传感性能有着重要影响。因此,对传感材料的微形态工程的研究具有重要的理论价值和创新意义,将极大地助力柔性压力传感器的设计和发展。

目前,根据传感机理的不同,柔性压力传感器主要可分为电阻式、电容式、晶体管式、压电式和摩擦电式(图1)。电阻式压力传感器主要将压力刺激转换为电阻或者电流变化输出。电容式压力传感器基于受压状态下活性层的电容变化来传感,其常用的传感材料包括以导电材料和聚合物构建的电极,以及以低模量材料构建的介电层。压力诱导调节源极和漏极之间载流子流量是晶体管式压力传感器的工作原理。压电传感器中,压电材料产生的瞬时电信号可用于对外部压力的监测,常用的压电传感材料包括压电晶体、压电聚合物、生物压电材料、压电肽类及其衍生物。摩擦电式压力传感器基于静电感应和接触带电的耦合效应工作,其输出信号与接触力的大小、速度、接触面积以及材料特性有关。来源:传感器专家网,转载此文是为传递更多信息,如有侵权请联系删除