基于手势识别技术的可穿戴柔性电子设备在医疗健康、机器人技术、人机交互和人工智能等领域颇具应用前景。研制性能优异的柔性应变传感器是实现高性能可穿戴设备应用的重要基础。传感器的灵敏度决定可穿戴设备的感知精度,而在过载、瞬时冲击、多次循环弯曲/扭折等条件下的机械鲁棒性将影响可穿戴设备实际应用环境条件下的长期可靠服役。目前,采用简单方法制备兼具高灵敏度和机械鲁棒性的柔性应变传感材料颇具挑战性。如何将基础研究获得的高性能柔性应变传感器推广应用到人机交互系统等实际应用场景中,将为此类器件的研发提供全新思路。
近期,中国科学院金属研究所沈阳材料科学国家研究中心薄膜与微尺度材料及力学性能研究团队,在前期柔性基体金属薄膜力学行为研究的基础上,基于柔性器件传感的力学原理,提出将裂纹类传感器的传感机制引入高机械鲁棒性蛇形曲流结构中,通过对传感层进行巧妙的高/低电阻区调控实现高灵敏度传感的学术思想,研制出灵敏度与裂纹类传感器相当(GF > 1000)且机械鲁棒性优异的柔性应变传感器。该传感器在过载、冲击、水下浸泡、高/低温等严苛环境条件的作用下表现出优异的循环稳定性,稳定响应周次达10000周。同时,该传感器具有响应和回复时间快(
该团队将传感器进一步集成到自主设计的无线可穿戴人机交互系统中,结合机器学习、用户界面设计等技术实现了实时手语翻译功能。传感器的高灵敏度和响应速度赋予了该系统及时准确的感知能力,同时高机械鲁棒性则赋予该系统在实际应用场景中长期可靠服役的能力。该系统利用机器学习分类算法实现了对15种单一手势手语的识别和6种组合手势手语的识别(识别准确率分别达98.2%和98.9%)。系统整体的响应时间小于1s。成本低廉、质轻便携且操作简便的系统既可将手语实时翻译成语音播放,又可通过定制的用户界面实现信号曲线和翻译结果的可视化。
后期可通过优化电路设计、扩展机器学习的手势或手语数据库,将该手势识别技术进一步应用于人机交互、虚拟现实、手势认证、智能传感、医疗健康等关键场景。该研究为实现柔性条件下的稳定增敏机制提供了新思路,有望促进可穿戴人机交互系统的应用和产业化发展。此外,该团队基于微小尺度材料和纳米金属层状复合材料力学行为基础研究工作的长期积累,研制出微机电系统(MEMS)采用超长服役寿命的纳米复合材料,有望应用于航天、通讯、导航和新能源等领域的射频MEMS上。
来源:传感器专家网