表面等离激元共振(SPR)光纤生化传感器因其体积小、抗干扰、高灵敏度、无标记、可实现远端检测等优势,在生化传感、即时现场检测(POCT)、环境监测等领域有着广泛的应用潜力。近日,微电子所健康电子中心路鑫超、黄成军课题组在SPR光纤传感器方面取得一系列重要进展。
课题组基于等离子体—光子腔复合结构,实现了一种具有高灵敏度和稳定性的光纤生化传感器,如图1a所示,该光纤传感器主要由CVD制备的光子腔和自组装制备的等离子体金纳米颗粒构成,通过法布里—珀罗谐振腔干涉与局域SPR(LSPR)间的耦合共振构建了特征峰。研究结果表明,该传感器灵敏度达到530 nm/RIU,且对纳米颗粒间距波动不敏感,具有优秀的稳定性与重复性(DOI: 10.1016/j.snb.2022.132059)。基于该原理的光纤传感器,成功实现了对纳摩尔浓度的免疫球蛋白G(IgG)以及肿瘤标志物PD-L1的特异性实时检测(IEEE Transducers 2023)。
课题组开发出一种三维光纤微结构传感方案,解决了传输SPR波矢匹配的难题。如图1b所示,在光纤端面集成微米尺寸圆台波导,通过横向波导限制及纵向圆台斜角共同调控入射波矢,高效激发传输SPR,实现了1439 nm/RIU的检测灵敏度。得益于光纤头上微米尺寸传感结构和蘸入—读取检出方式,该传感器可用于极小体积样品(如5 μL)的即时检测。实验表明,其对IgG检测极限为1.11 nM,为高时空分辨率的生化检测提供了一种新思路(DOI: 10.1016/j.snb.2023.133647)。
课题组研发出一种基于LSPR暗模式光纤传感器,如图1c所示。该传感器由腐蚀得到的圆柱波导和侧壁吸附的金纳米颗粒阵列构成,通过金颗粒阵列极化耦合及圆柱波导光传输相差所致场迟滞效应,激发金颗粒阵列的暗模式。得益于暗模式的长等离激元寿命及极强局域场增强,实验获得了2019 nm/RIU的高灵敏度,比传统LSPR亮模式光纤传感器灵敏度提高了3至10倍(IEEE Transducers 2023)。
基于上述光纤传感器,课题组针对传统SPR光纤传感器实际应用中依赖大尺寸光源及光谱仪的问题,进一步研制出一套以RGB LED为光源、光电二极管为探测器的小型化、便携式光纤传感系统。如图2所示,该系统尺寸为12 cm × 10 cm × 8 cm,重量仅为263 g,对IgG检测极限为9.1 nM,性能优于同类商业化小型SPR设备的检测结果(15.7 nM),成本降低了一个数量级以上。该工作为进一步促进SPR光纤生化传感技术的应用提供了一种可能的低成本途径(DOI: 10.1039/D3AN00028A)。
来源:传感器专家网